Search results for " DFT."

showing 10 items of 87 documents

α-d-Glucopyranose Adsorption on a Pd30 Cluster Supported on Boron Nitride Nanotube

2016

Boron nitride nanotube (BNNT) as an innovative support for carbohydrate transformation processes was evaluated, using density functional theory. The α-d-glucopyranose adsorption on a Pd30 cluster, supported on BNNT, was used to check both the local activity of topologically different metallic sites and the effects of the proximity of the BNNT surface to the same metallic sites. Detailed geometrical and electronic analyses performed on Pd30/BNNT and α-d-glucopyranose/Pd30/BNNT systems were discussed. It was observed that the deposition of the Pd30 cluster onto the BNNT support gives rise to an electronic rearrangement, determining a charge transfer from the support to the adsorbed metal clus…

Surface site reactivityChemical substanceNanotechnologyElectron donor02 engineering and technology010402 general chemistryDFT01 natural sciencesBoron nitride nanotubeCatalysisCatalysiCatalysisMetalchemistry.chemical_compoundAdsorptionSupported palladium catalystCluster (physics)Chemistry (all)Molecular electrostatic potentialGeneral Chemistry021001 nanoscience & nanotechnologyBoron nitride nanotube; DFT; Molecular electrostatic potential; Supported palladium catalyst; Surface site reactivity; α-d-Glucopyranose adsorption; Catalysis; Chemistry (all)0104 chemical scienceschemistryChemical physicsvisual_artα-d-Glucopyranose adsorptionvisual_art.visual_art_mediumDensity functional theory0210 nano-technologyScience technology and societyTopics in Catalysis
researchProduct

Spin state, electronic structure and bonding on C-scorpionate [Fe(II)Cl2(tpm)] catalyst: An experimental and computational study

2020

Abstract The Fe(II) spin state in the condensed phase of [Fe(II)Cl2(tpm)] (tpm = [tris(pyrazol-1-yl)methane]; 1) catalyst has been determined through a combined experimental and theoretical investigation of X-Ray Absorption Spectroscopy (XAS) at the FeL2,3-edges and NK-edge. Results indicated that in this phase a mixed singlet/triplet state is plausible. These results have been compared with the already know Fe singlet spin state of the same complex in water solution. A detailed analysis of the electronic structure and bonding mechanism of the catalyst showed that the preference for the low-spin diamagnetic ground state, strongly depends upon the ligands, the bulk solvent and the interactio…

Materials scienceSpin statesDFT calculationHomogeneous catalysis02 engineering and technologyElectronic structure010402 general chemistryDFT calculations01 natural sciencesCatalysisSinglet stateTriplet stateDFT calculations.HOMO/LUMOX-ray absorption spectroscopyC-scorpionate catalystX-ray absorption spectroscopyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSpin statesC-scorpionate catalyst; DFT calculations; Spin states; X-ray absorption spectroscopySpin statePhysical chemistry0210 nano-technologyGround state
researchProduct

Reaction between Indazole and Pd-Bound Isocyanides-A Theoretical Mechanistic Study

2018

The mechanism of the addition of indazole (Ind)&mdash

Models Molecular3003Activation of small moleculesIndazolesisocyanideIsocyanidePharmaceutical ScienceDFT calculationProtonation010402 general chemistryDFT calculationsactivation of small molecule01 natural sciencesMedicinal chemistryArticleAnalytical Chemistrylcsh:QD241-441chemistry.chemical_compoundDeprotonationNucleophilelcsh:Organic chemistryTheoreticalModelsDrug DiscoveryNitrilesPhysical and Theoretical ChemistryMechanical PhenomenaIndazoleNucleophilic additionCyanidesMolecular Structure010405 organic chemistrynitrileDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryRegioselectivityMolecularIsocyanidesModels TheoreticalTautomer0104 chemical sciencesnucleophilic additionchemistryChemistry (miscellaneous)Settore CHIM/03 - Chimica Generale E InorganicaMolecular Medicinereaction mechanismActivation of small molecules; DFT calculations; Isocyanides; Nitriles; Nucleophilic addition; Reaction mechanism; Cyanides; Indazoles; Models Molecular; Molecular Structure; Palladium; Mechanical Phenomena; Models Theoretical; Analytical Chemistry; Chemistry (miscellaneous); Molecular Medicine; 3003; Drug Discovery3003 Pharmaceutical Science; Physical and Theoretical Chemistry; Organic ChemistryPalladium
researchProduct

Density Functional Theory Study of the Trans-Trans-Cis (TTC)→Trans-Trans-Trans (TTT) Isomerization of a Photochromic Spiropyran Merocyanine

2008

Density Functional Theory (DFT) calculations have been performed on the TTC→TTT isomerization reaction of the open forms of the 1',3'-dihydro-8-bromo-6-nitro- 1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-(2H)indole (8-Br-6-nitro-BIPS) system. The calculations were carried out in vacuo and in methylene chloride solution at different temperatures. Results are compared with the available experimental values of free energy difference and activation energy in solution.

Models MolecularIndolesVacuumSpiropyran; photochromism; DFT calculation; solvent influence on activation energy; merocyanine.merocyaninesolvent influence on activation energyPharmaceutical ScienceDFT calculationPyrimidinonesPhotochemistryArticleAnalytical Chemistrylcsh:QD241-441Photochromismchemistry.chemical_compoundlcsh:Organic chemistryDrug DiscoveryBenzopyransMerocyaninePhysical and Theoretical ChemistryMethyleneFluorescent DyesIndole testSpiropyranMethylene ChlorideOrganic ChemistryStereoisomerismModels TheoreticalNitro CompoundsphotochromismSolutionschemistrymerocyanine.Chemistry (miscellaneous)ThermodynamicsMolecular MedicineDensity functional theorySpiropyranIsomerizationCis–trans isomerismMolecules
researchProduct

B-DNA Structure and Stability as Function of Nucleic Acid Composition. Dispersion-Corrected DFT Study of Dinucleoside-Monophosphate Single and Double…

2013

actions of the sugar-phosphate skeleton with water; (6) hydrophobic interactions of the DNA cylindrical core, made up by the hydrogen-bonded and stacked nitrogen bases, with the water solvent. Recently, there has been increasing effort in developing and applying quantum chemical methods able to reproduce the structure of native B-DNA and to correctly describe the energy involved in the intrastrand and interstrand noncovalent interactions between the nucleotide monomers. This topic has been approached by both wave function methods and density functional theory. [2] Water solvent and sodium counterions also play an important role in the formation and relative stabilization of the double-helic…

chemistry.chemical_classificationStereochemistryChemistryBase pairHydrogen bondStackingGeneral ChemistryCrystal structureFull Papersstacking interactionsNucleobaseHydrophobic effectCrystallographyDNA structuresSettore CHIM/03 - Chimica Generale E Inorganicadensity functional calculationshydrogen bondsNon-covalent interactionsDNA DFT calculations structure stabilityDensity functional theoryWatson–Crick base pairsTheoretical ChemistryGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)
researchProduct

Amidino substituted 2-aminophenols: biologically important building blocks for the amidino-functionalization of 2-substituted benzoxazoles

2021

Unlike the closely related and widely investigated amidino-substituted benzimidazoles and benzothiazoles with a range of demonstrated biological activities, the matching benzoxazole analogues still remain a largely understudied and not systematically evaluated class of compounds. To address this challenge, we utilized the Pinner reaction to convert isomeric cyano-substituted 2- aminophenols into their amidine derivatives, which were isolated as hydrochlorides and/or zwitterions, and whose structure was confirmed by single crystal X-ray diffraction. The key step during the Pinner synthesis of the crucial carboximidate intermediates was characterized through mechanistic DFT calculations, with…

Models MolecularAmidinesAntineoplastic AgentsAminophenolsCrystallography X-Ray010402 general chemistry01 natural sciencesBiochemistryAmidinechemistry.chemical_compoundCell Line TumorHumansPinner reactionPhysical and Theoretical ChemistryDensity Functional TheoryCell ProliferationBenzoxazolesMolecular Structurebenzoxazoles ; amidino-functionalization ; Pinner reaction ; organic synthesis ; X-ray analysis ; antiproliferative activity ; DFT calculations010405 organic chemistryArylOrganic ChemistryBiological activityBenzoxazoleCondensation reactionCombinatorial chemistry0104 chemical sciences3. Good healthCarboximidatechemistrySurface modificationDrug Screening Assays AntitumorOrganic & Biomolecular Chemistry
researchProduct

Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.

2016

Indexación: Web of Science Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic and nucleophilic Parr functions, as the most relevant indices for the study of organic reactivity, are discussed. http://www.mdpi.com/1420-3049/21/6/748

Chemical PhenomenaNucleophilicityChemistry OrganicPharmaceutical ScienceElectronsnucleophilicityReview010402 general chemistry01 natural sciencesreactivity indicesAnalytical ChemistryMolecular electron density theorylcsh:QD241-441Reactivity indicesNucleophilelcsh:Organic chemistryconceptual DFTParr functionsComputational chemistryDrug DiscoveryOrganic chemistryReactivity (chemistry)Physical and Theoretical ChemistryElectrophilicity010405 organic chemistryChemistryOrganic Chemistrymolecular electron density theory0104 chemical sciencesChemistry (miscellaneous)Conceptual DFTElectrophileMolecular MedicineQuantum TheoryDensity functional theoryelectrophilicityMolecules (Basel, Switzerland)
researchProduct

Stability, electronic structure, and optical properties of protected gold-doped silver Ag29−xAux (x = 0–5) nanoclusters

2017

In this work, we used density functional theory (DFT) and linear response time-dependent DFT (LR-TDDFT) to investigate the stability, electronic structure, and optical properties of Au-doped [Ag29-xAux(BDT)12(TPP)4]3- nanoclusters (BDT: 1,3-benzenedithiol; TPP triphenylphosphine) with x = 0-5. The aim of this work is to shed light on the most favorable doped structures by comparing our results with previously published experimental data. The calculated relative energies, ranging between 0.8 and 10 meV per atom, indicate that several doped Ag29-xAux nanoclusters are likely to co-exist at room temperature. However, only the Au-doped [Ag29-xAux(BDT)12(TPP)4]3- nanoclusters that have direct bon…

optical propertieslinear response timedependent DFTMaterials scienceGeneral Physics and AstronomyNanotechnology02 engineering and technologyElectronic structureDirect bonding010402 general chemistry01 natural sciencesNanoclustersAtomAu-doped nanoclustersMoleculemoleculessilverstability (physical qualities)Physical and Theoretical Chemistryta116density functional theoryta114DopantDopingelectronic structure021001 nanoscience & nanotechnology0104 chemical sciencesPhysical chemistryDensity functional theory0210 nano-technologyPhysical Chemistry Chemical Physics
researchProduct

Shape-Dependence of Pd Nanocrystal Carburization during Acetylene Hydrogenation

2015

This interdisciplinary work combines the use of shape- and size-defined Pd nanocrystals (cubes of 10 and 18 nm, and octahedra of 37 nm) with in situ techniques and DFT calculations to unravel the dynamic phenomena with respect to Pd reconstruction taking place during acetylene hydrogenation. Notably, it was found that the reacting Pd surface evolved at a different pace depending on the shape of the Pd nanocrystals, due to their specific propensity to form carbides under reaction conditions. Indeed, Pd cubes (Pd(100)) reacted with acetylene to form a PdC0.13 phase at a rate roughly 6-fold higher than that of octahedra (Pd(111)), resulting in nanocrystals with different degrees of carburizati…

Reaction conditionsMaterials scienceNanotechnologyPd Nanocrystal Acetylene Hydrogenation DFT structure sensitivitySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAcetylene hydrogenationCarbidechemistry.chemical_compoundGeneral EnergyAcetylenechemistryNanocrystalOctahedronSettore CHIM/03 - Chimica Generale E InorganicaLattice (order)Physical chemistryPhysical and Theoretical Chemistry
researchProduct

Metal complex-DNA binding: Insights from molecular dynamics and DFT/MM calculations.

2012

Molecular dynamics (MD) simulations, followed by density functional theory/molecular mechanics (DFT/MM) calculations, provided a detailed structure of the binding site between the cationic metallointercalator (dipyrido [3,2-a:2',3'-c]phenazine)(glycinato)copper(II), [Cu(gly)(dppz)](+), and the two dodeca-deoxynucleotide duplexes [dodeca(dG-dC)]2 and [dodeca(dA-dT)]2. Three simultaneous DNA binding types were detected in the fully optimized DFT/MM structures: 1) metal coordination through exocyclic oxygen atoms of nitrogen bases; 2) intercalation of the dppz chromophore between stacked Watson-Crick AT-AT and GC-GC bases; and 3) hydrogen bonding between the glycinato ligand and amine groups o…

Hydrogen bondChemistryEntropyEnthalpyDNAChromophoreMolecular Dynamics SimulationBiochemistryComputational chemistry Copper DFT DNA MD QM/MMStandard enthalpy of formationGibbs free energyInorganic ChemistryQM/MMCrystallographysymbols.namesakeMolecular dynamicsModels ChemicalComputational chemistrySettore CHIM/03 - Chimica Generale E InorganicasymbolsDensity functional theoryCopperJournal of inorganic biochemistry
researchProduct